The Formation of q*(3e)-Bonded Allenyl Complexes by Deprotonation of Four-electron Donor Alkyne Metal Complexes

Frank J. Feher, Michael Green,t and Richard A. Rodrigues

Department of Inorganic Chemistry, The University, Bristol BS8 **7** *TS and Department of Chemistry, King's College London, Strand, London WC2R 2LS, U. K.*

Addition of Et₃N to a solution of $[Mo(n^2-PhC_2CH_2Ph)/P(OMe)_3\frac{1}{2}(n^2-E^H_5)][BF_4]$ in $(CD_3)_2CO$ results in a selective deuteriation of the methylene hydrogens, whereas treatment with KH-ButOH-Et,O results in H2 **loss** and formation of the air- and moisture-sensitive $\eta^2(3e)$ -allenyl complexes $[Mo\left(=C(Ph)C=CHPh\rangle\{P(Ohe)_3\}_{2^-}$ $(\eta - C_5H_5)$; this reaction can be generalised and electrophiles react with these new molecules to form four-electron donor alkyne cations.

In the reactions of nucleophiles with the four-electron donor alkyne complexes $[Mo(\eta^2-RC_2R')\{P(OMe)_3\}_2(\eta-C_5H_5)] - [BF_4] (R, R' = alkyl, aryl, SiMe_3, H)$, two competing reaction paths have been identified. Direct reaction at the molybdenum centre results^{1,2} in loss of $P(\text{OMe})_3$ and formation of the neutral species $[MoR''(\eta^2-RC_2R')\{P(OMe)_3\}$ (η -C₅H₅)] $(R'' = alkyl, aryl)$, whereas attack on a co-ordinated alkyne carbon atom leads² to η^2 -vinyl complexes. There is a third type of reaction which has so far not been observed, involving deprotonation of cations like $[Mo(\eta^2-PhC_2CH_2Ph)$ - ${P(OMe)_3}_2(\eta$ -C₅H₅)][BF₄] (1). Such a reaction might be expected to lead to the formation of a potentially interesting group of molecules, η^2 -allenyl or metallamethylenecyclopropene complexes. To gain synthetic access to molecules of this type a proton-specific nucleophile is required.

In order to assess whether a deprotonation reaction could actually be effected, a solution of **(1)** in deuterioacetone was treated with Et_3N (12 h, 25 °C). This led to a facile hydrogen to deuterium exchange reaction and the formation in high yield of purple, crystalline $[Mo(\eta^2-PhC_2CD_2Ph)\{P(OMe)_3\}_2(\eta C_5H_5[[BF_4]$. This observation can be compared to the report³ that the cation $[Mo(CO)(\eta^2 \text{-} MeC_2Me)_2(\eta \text{-} C_5H_5][PF_6]$ catalyses deuterium-hydrogen exchange between free but-2-yne and deuterioacetone on addition of a strong base. However, this exchange process was interpreted in terms of the intermediacy of the σ -allenyl species $[Mo\{\sigma-C(Me)=C=CH_2\}$ -

t **Correspondence to M. G., King's College, London.**

Scheme 1. $L = P(OMe)_3$; i, KH, Et₂O, Bu^tOH, $-H_2$; ii, HBF₄⁺Et₂O.

 $(CO)(\eta^2\text{-}MeC_2Me)(\eta\text{-}C_5H_5)$, whereas it is suggested that deuteriation of the bis(trimethy1 phosphite) complex **(1)** involves the reversible deprotonation of (1) to form the $\eta^2(3e)$ -bonded allenyl complexes $[\overline{Mo} \{=C(Ph)C=CHPh\}$ -(3a)

Scheme 1. L = P(OMe)₃; i, KH, Et₂O,

(CO)(η^2 -MeC₂Me)(η -C₅H₅)], whereas it is suggested that

deuteriation of the bis(trimethyl phosphite) complex (1)

involves the reversible deprotonation of (1) to that when a suspension of **(1)** in diethyl ether is treated (0.5 h, room temp.) with KH in the presence of a catalytic amount $(5 \text{ ul in } 10 \text{ ml } Et_2O)$ of Bu^tOH, gas evolution occurs and a thermally and hydrolytically sensitive, neutral, purple complex is formed, which can be recrystallised (195 **K)** from pentane. This material was identified \ddagger as a mixture (7:3) of the two isomeric $\eta^2(3e)$ -allenyl complexes (2) and (3) (Scheme l), which differ with respect to the relative dispositions of the phenyl and hydrogen substituents on the y-carbon. The presence of a molybdenum to carbon double bond is supported by the ^{13}C -{ ^{1}H } n.m.r. spectra. Thus, the spectrum of the

major isomer shows triplet signals at *6* 253.5 [J(CP) 11.0 Hz], 151.6 $[J(CP)$ 17.6 Hz], and 109.0 $[J(CP)$ 4.4 Hz], which are assigned to the C_{α} (alkylidene), C_{β} , and C_{γ} carbon atoms, respectively. The $31P-{1H}$ n.m.r. spectrum measured at $190K$ shows the expected two (ratio 7:3) AB quartets; however, on warming to 199K these coalesce, and at room temperature two sharp singlets (ratio 7:3) are observed $[\Delta G_{199}^4$ 40.0 (±0.5) kJ mol⁻¹l. These observations are consistent with the picture illustrated in Scheme 1. In solution the alkyne cation§ exists as a mixture of the two enantiomers **(la)** and **(lb),** which can interconvert *via* a windscreen wiper motion. Deprotonation of a benzylic carbon-hydrogen bond can then afford either of the two isomers **(2)** and **(3),** the relative proportion depending on the direction of approach by the base and the barrier to rotation of the benzyl group. Each of the two isomers can then interconvert by a windscreen wiper motion into its mirror image, *i.e.* (2a) \Rightarrow (2b) and $(3a) \rightleftharpoons (3b)$.

As shown in Scheme 2, the η^2 -allenyl fragment would be expected^{2,4} to adopt an essentially planar geometry, since in

 \ddagger *Selected spectroscopic data* for compound (2): n.m.r. ¹H(C₆D₆), δ 7.43-7.32, 7.20-7.02 (m, 10H, Ph), 6.55 (m, 1H, =CHPh), 5.11 [t, 5H, C₅H₅, J(HP) 0.88 Hz], 3.38 [at, 18H, POMe, $|J(HP) + J(HP')|$ 311, C₅₁₁₅, J(11) 0.36 112₁, 5.35 [at, 1611, 1 O.c., p(111) + 3(111)₁
11.38 Hz]; ¹³C-{¹H} (C₆D₆), δ 253.5 [t, C_α, J(CP) 11.0 Hz], 151.6 [t,
C_β, J(CP) 17.6 Hz], 148.3 (ipso-Ph), 143.4 (ipso-Ph), 128.5, 127 126.5, 125.2 (Ph), 109.0 [t, C_y, $J(CP)$ 4.4 Hz], 92.4 (C₅H₅), 51.8 $[P(OMe)₃]$; ³¹P-{¹H}(C₆D₅CD₃, 190 K), δ 202.62 p.p.m. (br. AB system). Compound (3): n.m.r. ¹H (C₆D₆), δ 7.53-7.43 (m, 10H, Ph), 5.19 [t, 5H, C₅H₅, $J(HP)$ 1.2 Hz], 5.15 (m, 1H, =CHPh), 3.22 [at, 18H, POMe $|J(HP) + J(HP')|$ 11.7 Hz]: 31P-{1H}(C₆D₅CD₃, 190 K), $\delta_{\rm A}$ 198.77, $\delta_{\rm B}$ 198.28 p.p.m. [AB system, $J(\rm{P}P')$ 58.0 Hz]. Compound **(4):** n.m.r. ¹H(CD₂Cl₂), δ 7.9–7.8, 7.35–6.52 (m, 15H, Ph), 5.12 [t, 5H, C₅H₅, J(HP) 1.1 Hz], 3.47 [at, 18H, POMe, $|J(HP) + J(HP')|$ 10.94 Hz]; ¹³C-{¹H} (C₆D₆), δ 245.02 [t, C_α, J(CP) 20.9 Hz], 147.85 123.01 (Ph), 91.44 (C₅H₅), 50.65 [P(O*Me*)₃]; ³¹P-{¹H}(C₆D₆), δ 195.75 p.p.m. Compound (5): n.m.r. ¹H (C_6D_6), δ 8.42--6.56 (m, 35H, Ph), 4.76 [t, 5H, C₅H₅, J(HP) 0.89 Hz], 2.02 (m, 4H, CH₂); 31P-{1H} **(C,D,),** 6 62.56p.p.m. Compound **(6):** n.m.r. 1H (CD,Cl,), δ 7.75-7.16 (m, 5H, Ph), 6.06 (m, 1H, =CHH'), 5.18 [t, 5H, C₅H₅, $J(HP)$ 0.88 Hz], 4.57 (m, 1H, =CHH'), 3.45 [at, 18H, POMe, $J(HP)$ $+J(HP')$ 11.37 Hz]; ³¹P-{¹H} (C₆D₆), δ 200.80 p.p.m. Compound $('at' = apparent triplet).$ $[t, C_8, J(CP)$ 6.6 Hz $[t, 130.05, 127.71, 127.22, 126.44, 124.38, 123.60,$ (7): **n.m.r.** ${}^{31}P_-({}^{1}H)$ (C₆D₆), δ 157.19 p.p.m. [J(WP) 566.4 Hz].

[§] X-Ray crystallography2shows that in the solid state **a** conformation is adopted in which the C_2 axis of the co-ordinated alkyne lies parallel to an Mo-P vector, whereas, in solution, a windscreen wiper motion makes the two ³¹P environments equivalent. If complete rotation (2π) of the alkyne could occur then four not two isomeric η^2 -allenyl complexes would be observed.

transforming an $\eta^1(1e)$ allenyl group into an $\eta^2(3e)$ bonding mode, the allenyl fragment must undergo a rotational movement to allow interaction of the C_{α} - C_{β} π system with the metal centre.

The ratio of the two isomers **(2)** and **(3)** is invariant in the temperature range 190-353 K indicating that in contrast with methylenecyclopropenes,⁵ there is a relatively high barrier to rotation about the exocyclic double bond. It is also interesting that phosphite exchange [with $P(OCD_3)_3$] only occurs at elevated temperatures **(4** h, 351 K).

The deprotonation reaction can be generalised; treatment of the appropriate cationic alkyne complexes with KH-Bu^tOH in Et₂O affording the η^2 -allenyl complexes (4) (purple), *(5)* (red-purple), **(6)** (green-yellow), and **(7)** (blueblack). Each of these species, which are air- and moisturesensitive, showed n.m.r. spectra‡ characteristic of an η^2 allenyl complex.

All these η^2 -allenyl complexes react with HBF₄.Et₂O in CH_2Cl_2 to reform the parent alkyne cations by selective

protonation of the γ -carbon atom. The electrophilic reagent $CF₃SO₃Me$ also reacts with, for example, the isomeric q2-allenyl complexes **(2)** and **(3),** and **(6)** to form the alkyne cations $[Mo{\{\eta^2-PhC_2CH(Me)Ph}\{P(OMe)_3\}_2(\eta-C_5H_5)]$ - $[CF₃SO₃]$ **(8)**, and $[Mo(\eta^2-PhC_2Et)\{P(OMe)₃\}^2(\eta-C_5H_5)]$ -[CF3S03] **(9),** respectively, the former containing a chiral carbon centre. In view of the isolobal relationship⁶ CH \leftarrow $Mol₂(\eta-C₅H₅)$, it is interesting to relate these reactions with electrophiles to the observation⁵ that protonation of methylenecyclopropenes gives cyclopropenium cations.

We thank the S.E.R.C. for support and for a studentship (R. **A.** R.), and Dr. G. Hawkes (Queen Mary College) for the variable temperature 162 MHz 31P n.m.r. studies.

Received, 6th April 1987; Corn. 439

References

- 1 F. J. Feher, M. Green, and A. G. Orpen, J. *Chern. SOC., Chern. Cornrnun.* 1986, 291.
- 2 **S.** R. Allen, R. G. Beevor, M. Green, N. C. Norman, A. G. Orpen, and **1.** D. Williams, J. *Chem.* **SOC.,** *Dalton Trans.,* 1985, 435.
- 3 R. G. Bergman and P. L. Watson, J. *Am. Chern. Soc.,* 1980, **102,** 2698.
- 4 D. C. Brower, K. R. Birdwhistel, and J. L. Templeton, *Organometallics,* 1986, *5,* 94.
- 5 W. E. Billups, L.-J. Liu, and E. W. Casserly, *J. Am. Chem. SOC.,* 1984, **106,** 3898; **S. W.** Staley and T. D. Norden, *ibid.,* 1984, **106,** 3699; B. Halton, C. J. Randall, and P. J. Stang, *ibid.,* 1984, **106,** 6108.
- 6 T. A. Albright, J. K. Burdett, and M. H. Whangbo, 'Orbital Interactions in Chemistry,' Wiley, New York, 1985, **p.** 402; R. Hoffmann, *Angew. Chern. Int. Ed. Engl.,* 1982, **21,** 711.